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Abstract

In the context of collaborative robotics, distributed situation awareness is essential for supporting collective
intelligence in teams of robots and human agents where it can be used for both individual and collective decision
support. This is particularly important in applications pertaining to emergency rescue and crisis management. During
operational missions, data and knowledge are gathered incrementally and in different ways by heterogeneous robots
and humans. We describe this as the creation of Hastily Formed Knowledge Networks (HFKNs). The focus of this paper is
the specification and prototyping of a general distributed system architecture that supports the creation of HFKNs by
teams of robots and humans. The information collected ranges from low-level sensor data to high-level semantic
knowledge, the latter represented in part as RDF Graphs. The framework includes a synchronization protocol and
associated algorithms that allow for the automatic distribution and sharing of data and knowledge between agents.
This is done through the distributed synchronization of RDF Graphs shared between agents. High-level semantic
queries specified in SPARQL can be used by robots and humans alike to acquire both knowledge and data content
from team members. The system is empirically validated and complexity results of the proposed algorithms are
provided. Additionally, a field robotics case study is described, where a 3D mapping mission has been executed using
several UAVs in a collaborative emergency rescue scenario while using the full HFKN Framework.

Keywords: Multi-robot collaboration, Unmanned aerial vehicles, Distributed knowledge representation, Distributed
situation awareness, Semantic web technology, Knowledge synchronization, Multi-agent human/robot interaction

1 Introduction
The importance of effective communication and effi-
cient data/knowledge transfer is essential for the coor-
dination of life-saving activities in regions affected by
natural or man-made disasters. The organizations and
groups involved range from disaster relief, governmental
and non-governmental organizations at the macro level,
to actual teams of emergency rescue responders on the
ground at the micro-level. Emergency rescue teams have
recently been supported by heterogeneous robotic assis-
tants. There are an increasing number of natural disasters
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that include wild fires, hurricanes, earthquakes and floods
that require state-of-the-art emergency response to mini-
mize loss of life and property damage.
In a seminal article, Denning [1], pointed out the

importance of establishing Hastily Formed Networks
(HFNs) in the broader sense as "the ability to form
multi-organizational networks rapidly" and as being cru-
cial to disaster relief. Here, Denning’s focus was on
effective human communication rather than efficient
data/knowledge transfer, and the use of autonomous sys-
tems in emergency rescue operations was not yet preva-
lent. Additionally, the term conversation space was intro-
duced for the medium in which such communication
takes place.
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Experience has shown that first response is dependent
on the quality and nature of this conversation space. This
space is intended to provide a medium for acquiring situ-
ation awareness and the original concept was very much
focused on setting up the physical layer for communica-
tion. Proposed components of the conversational space
were the physical systems, the players involved and the
interaction practices. The latter include situation aware-
ness, acquiring and sharing information, planning, mak-
ing decisions, coordination, and command and control
required by the players and teams involved.
Using Denning’s metaphor of Hastily Formed Networks

for enhanced communication and conversation spaces
among human agents in emergency rescue operations as
a starting point, we extend the idea in two ways using the
term Hastily Formed Knowledge Networks (HFKNs) as a
guiding metaphor for this research.

– Firstly, rather than focusing solely on teams of human
agents, we focus on teams of human and
heterogeneous autonomous robotic agents
interacting in various ways among themselves and
with humans to make rescue operations more
efficient and to achieve collaborative goals.

– Secondly, rather than just focusing on
communicative aspects and conversational spaces for
crisis communication, we instead focus on both
communicative aspects and data/knowledge aspects
in data/knowledge interaction spaces among
collaborative teams consisting of both human and
robotic agents.

The goal is to automate the goal-driven creation and
exchange of local and global situation awareness among
team members (both human and robotic) in addition to
improving the basis for informed decision making by pro-
viding timely data and knowledge rich contexts for doing
this. These data and knowledge contexts will be both indi-
vidually and collaboratively constructed on-the-fly during
the unfolding of emergency rescue missions relative to the
needs and requests of human and robotic team members.
The work presented in this paper is part of a larger

infrastructural multi-agent based framework being devel-
oped with the goal of leveraging the use of heteroge-
neous teams of human agents, Unmanned Aerial Vehicles
(UAVs), and surface and ground vehicles. The intent is
to provide situation awareness, services and supplies to
emergency rescuers on the ground in collaboration with
other human resources in disaster relief scenarios1.
Much of the recent work with collaborative human/

robotic systems [2–8] has focused on the representation
and generation of shared tasks and shared goals and how
such shared goals can be achieved through the coordi-

1https://www.ida.liu.se/divisions/aiics/projects/coopuav.en.shtml.

nation of agents participating in such shared tasks. In
other work, we have considered this and developed a
delegation-based framework for task generation, alloca-
tion, and execution for collaborative robotics [9–11]. In
fact, these earlier results will be used together with the
work presented in this article, for supporting collabora-
tive data collection tasks and other types of missions. The
delegation framework will be used to setup distributed
data collection, distribution, and synchronization of tasks
among teams of robotic and human agents. These data
stores then contribute to a shared situation awareness of
different aspects of the operational environment that can
be used by robotic and human agents alike in other tasks
associated with emergency rescue.

1.1 SymbiCloud HFKN framework
The focus of this paper is the SymbiCloud HFKN Frame-
work, which includes a data/knowledge management
infrastructure that is intended to be used to support dis-
tributed, collaborative collection of data and knowledge
and its shared use in multi-agent systems. In this frame-
work, each agent is assumed to have a SymbiCloudmodule
(SCModule) containing its local or contextual perspective
of its operational environment. This module can include
geographically tagged information, sensor-data abstrac-
tions, 3Dmaps, static and dynamic object representations,
and activity recognition structures, in addition to a rich set
of reasoning engines and data/knowledge management
processes. An agent’s SCModule content will vary accord-
ing to its capabilities, its sensors, and its ability to gather
information. An agent’s data/knowledge perspective can
be enhanced and extended through interaction and syn-
chronization with other agent’s data/knowledge perspec-
tives. These shared perspectives provide enhanced situa-
tion awareness for individual team members.
Given a team of agents, information in SCModules can

be aggregated andmerged dynamically and virtually at dif-
ferent abstraction levels to allow for richer perspectives to
improve timely decision making and planning processes
for the individual agents and teams. The Symbi in Sym-
biCloud is intended to emphasize that we would like to
semantically ground as much data and knowledge as pos-
sible. The Cloud in SymbiCloud is intended to emphasize
the highly distributed and fluid use of data and knowledge
across individual team members and the goal of leverag-
ing developments in Cloud-based technology in a wider
perspective, where parts of an agent’s SymbiCloudmodule
may be stored and accessed using Cloud services. Addi-
tionally, agents with SCModules can access useful and
relevant information directly from the Internet such as
Semantic Web content and combine it with an agent’s
locally stored knowledge.
Figure 1 provides a high-level schematic of the basic

data/knowledge functionality we are interested in provid-

https://www.ida.liu.se/divisions/aiics/projects/coopuav.en.shtml
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Fig. 1 High-level schematic - the collaborative robotics framework assumes that each participating agent has a DelegationModule and a SymbiCloud
Module. Agents on a team generally communicate via speech acts. Each agent is assumed to be using a communication middleware such as ROS
while generating distributed tasks and distributed situation awareness

ing for teams of human/robotic agents. In this figure, there
are four agents, one human agent, one Unmanned Surface
Vehicle (USV) and twoUnmannedAerial Vehicles (UAVs).
Each agent has the functionality to generate and share
collaborative tasks through the use of a distributed del-
egation framework that is part of the HFKN Framework
which allows for generating, synchronizing, querying, and
sharing of the data/knowledge among agents.
For the purposes of this paper, one can abstract

the distributed knowledge network from the high-level
schematic depicted in Fig. 1. This aspect of the framework
is shown in Fig. 2.
Each agent in the system is assumed to have associated

with it, an SCModule. Additionally, it is assumed that each
robotic agent uses a communication framework, such as
ROS2 [12]. Each SCModule stores the local or contextual
situation awareness of an agent, structuring associated
data and knowledge at different levels of abstraction. An
SCModule can in part, be viewed as a generalization of a
layered Geographical Information System (GIS), but with
a much richer variety of data and knowledge structures
and more general querying mechanisms to access infor-
mation in SCModules. Additionally, SCModules include
a KDB Manager for synchronizing and merging informa-
tion and knowledge content across agents.
Robotic and human agents are intended to have access

to data, information and knowledge at many different lev-
els of abstraction ranging from low-level sensor data, such

2ROS is an acronym for the Robot Operating System, a middleware
framework for robotics. For more information, see https://www.ros.org. Both
ROS and ROS2 are currently used in the framework because ROS2 has better
communication support for multi-agent systems. At a later date, full transition
to ROS2 will be made.

as range data in single scans from LIDAR (Laser Imaging
Detection and Ranging sensor), or collections of images
from camera sensors. Intermediate levels of data and
knowledge may contain 3D or infrared maps, that are the
result of post-processing of low-level sensor data. These
structures may in turn be semantically labeled with identi-
fiable geolocated objects and additional semantic proper-
ties. Relations between such objects may then be defined
and information stored about both static and dynamic
activities of such objects. High-level semantic represen-
tations provide qualitative models possibly grounded in
lower-levels of the knowledge and data abstractions asso-
ciated with an agent.
In actual emergency rescue scenarios, there are a num-

ber of important contingencies that arise that make the
design and implementation of the functionalities included
in the HFKN Framework relatively complex:

• Unreliable communication between agent systems.
• Out-of-range issues between agent systems.
• Agent systems entering and exiting operational

environments dynamically.
• Agent systems turning off for such activities as

recharging or refueling.
• Queries that return no data, or only partial data in the

context of data required by the querying agent.

Such contingencies present an additional level of com-
plexity in designing the functionalities of interest. These
issues must be dealt with in order to build robustness
and resiliency into the framework design and use. Some
of these issues can be dealt with by leveraging exist-
ing communication functionality in middleware such as

https://www.ros.org


Doherty et al. Autonomous Intelligent Systems            (2021) 1:16 Page 4 of 29

Fig. 2 In a multi-agent system, distributed information resources can be viewed as a dynamic graph that can grow and shrink as agent members
enter and exit a particular mission in an operational environment

ROS/ROS2, but other aspects must be taken into account
in the associated algorithms as will be shown.

1.2 Contributions and content
The paper includes the following contributions:

• A description of a general system architecture
(SymbiCloud HFKN Framework) for supporting
multi-modal data/knowledge storage, in addition to
the dynamic aggregation, sharing, transfer and
querying of such data/knowledge in multi-agent
contexts consisting of human and robotic agents.
Information ranges from low-level sensor data
collected by robotic sensors to high-level semantic
knowledge.

• An integration of an existing delegation-based
multi-agent framework with the HFKN Framework
that together is used for automatic generation and
execution of collaborative data/knowledge-collection
tasks.

• An integration of an RDF (Resource Description
Framework) Graph Synchronisation System which
allows for the automatic distribution and sharing of
information and knowledge between agents.

• A data-transfer algorithm and protocols for
exchanging datasets of low-level sensor data among
agents based on the use of metadata about such
datasets.

• An empirical evaluation of the HFKN Framework
and associated algorithms.

• A field robotics emergency rescue case study based
on a multi-agent data collection mission that uses all
described functionalities of the HFKN Framework.

The paper is structured as follows. In Section 1, the basic
context for this work in addition to a conceptual descrip-
tion of the HFKN Framework has been introduced. In

Section 2, a brief summary of the Delegation Framework
used by the HFKN Framework is described. In Section 3,
the structure and content of SCModules, that provide
the data and knowledge content of agents is presented.
In Section 4, the concept of a dataset which specifies
a collection of sensor data in addition to its metadata
description is provided. In Section 5, a brief overview
of the RDF Graph Synchronisation (RGS) System and
its integration in the HFKN Framework is presented. In
Section 6, the processes executed by agents to exchange
low-level sensor data via a dataset transfer protocol is
presented. In Section 7, a field robotics case study with
collaborating UAVs and human agents that display the
power of the HFKN Framework in actual robotic scenar-
ios is described. Sections 8 and 9 provide a description of
related work and conclusions, respectively. The paper also
includes two appendices that provide detailed descrip-
tions of schemas used in SCModules and examples of
complex SPARQL queries that can be expressed by the
system.

2 Brief summary of the delegation framework
In the introduction, we provided an overview of the
HFKN Framework which is the focus of this article. It is a
framework for collaborative robotics which leverages the
use of a delegation framework [9, 11, 13, 14] for generating
and executing complex, multi-agent distributed plans and
tasks. An overview of the full architecture that combines
the two is shown in Fig. 1. In order to understand how the
HFKN Framework leverages the delegation framework,
it is important to have a cursory understanding of this
framework. This section is intended to do that.
As in the case of the distributed knowledge network,

one can abstract an instance of the distributed delegation
network, from the high-level schematic depicted in Fig. 1.
This aspect of the framework is shown in Fig. 3.
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Fig. 3 In a multi-agent system, the distributed task generation and execution network can be viewed as a dynamic graph that can grow and shrink
as agent members enter and exit a particular mission in an operational environment

In the delegation framework, each member of a col-
laborative team is assumed to have a Delegation Module
associated with it. An agent’s Delegation Module con-
tains a Delegation Manager that manages the external
interactions with other agents on the team, in addition
to internally managing the generation and execution of
composite tasks [10]. Figure 4 provides a high-level char-
acterization of the internal architecture of a Delegation
Module.
Given a high-level mission goal specification, provided

by a member of the team, the purpose of the delegation
framework is to dynamically generate a task specification
(often distributed among agents) to achieve the goal. This
task specification often involves the use of a subset of
members of the team. The task specification is generated

recursively through a process where participating team
members agree to do a part of the mission if they have the
required resources and are able to commit to doing that
part of the task specification. Each team member has the
ability to broadcast for help in achieving sub-tasks asso-
ciated with the larger mission specification. If successful,
the net result of the process is the generation of a task
specification where different parts of the specification are
allocated to appropriate members of the team.
Tasks are represented as Task Specification Trees (TST)

[10, 15]. A TST consists of a set of control nodes and a
set of elementary actions (leaf nodes) provided by partici-
pating members of the team. For simplicity, control nodes
can be viewed as standard forms of control in program-
ming languages such as sequence, concurrency, if-then,

Fig. 4 DelegationModule associated with each collaborative agent on a team
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etc. During the delegation process, a tree is constructed
recursively through calls to participating agents where
they contribute to the overall task by providing sub-trees
they are able to commit to and execute.
It is assumed that each agent publicly commits to a set

of elementary and composite actions that can be used in
the collaborative delegation process. In the case of UAVs,
examples of elementary actions would be such actions as
FlyTo, TakeOff, or Land. Composite actions might con-
sist of more complex activities such as scanning of a
region, that although internally complex for the agent, are
viewed externally as elementary actions that can be used
by the team to generate more complex task specifications
collectively.
Figure 5 depicts an example of a TST generated for

a concurrent scanning mission consisting of two UAV
agents.
Each Delegation Module as shown in Fig. 4 consists of

four conceptual components:

– Delegation Manager - It provides inter-agent
communication to other members of the team during
the delegation process. Internally, it accesses the TST
Factory to generate TST nodes during the TST
generation phase and the TST Executor factory to
execute TSTs during the execution phase.

– TST Factory - It has the ability to generate TST
nodes and TST sub-trees during the TST generation
phase in the delegation process.

– TST Executor - Associated with each elementary or
composite action publicly declared by an agent, is a
platform dependent executor that interfaces to an
agents internal functionality. The TST executor is
responsible for interfacing to and managing the

execution of executors associated with elementary or
composite actions for a specific platform. If a TST
node is a goal node type, the TST executor also has
the possibility to interface with an automated planner
associated with a platform to generate a sub-tree from
the planner that can then be used by the TST factory.

– Constraint Server - TST nodes can contain
constraints that are inherited as the delegation
process progresses. In order for an agent to answer
the question “can I do this?” when it receives a
request from another agent, it autonomously sets up
a constraint problem and checks the problem for
consistency, possibly returning specific variable
bindings. The constraint server handles this part of
the generation process. For instance, constraints can
be temporal, resource based, or associated with
sensor capability.

In the context of the HFKN Framework, the delega-
tion functionality will be used to generate and execute
distributed information gathering and manipulation tasks
for teams of collaborative humans and robots. Examples
of information gathering and manipulating TSTs will be
described in the field study, presented in Section 7.

3 SymbiCloudmodules
SCModules are associated with each agent and store
combinations of data, information and knowledge. Addi-
tionally, SCModules are responsible for sharing, synchro-
nizing and aggregating data, information and knowledge
between agents.
We characterize three types of data (in the general

sense) loosely coupled to the concepts of data, informa-

Fig. 5 TST generating a concurrent scan by a fixed-wing and a rotor-based system. A Test-If node first checks if the rotor-based system is on the
ground or in the air. From the agent’s perspective, a Scan-Ground-Single task is a composite action, while from the delegation perspective it is an
elementary action
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tion and knowledge that are acquired, stored, aggregated
and shared by agents (see Fig. 6):

– Low-level sensor data characterizes raw output from
diverse sensors. Examples include data in images
from camera sensors or point data in single scans
from LIDAR systems.

– Intermediate data characterizes processed raw data
with minimal to moderate structure. Representation
of such data are often collections of feature/value
pairs stored in tables but could also be the output of
sensor fusion algorithms such as point clouds and 3D
maps.

– High-level semantic data characterizes data generally
structured around objects with properties and
relations between objects. Such data is normally
semantically grounded. Common examples would be
ontological structures, logical structures, or graph-
structured knowledge. Objects representing humans
identified in search and rescue missions with feature
data associated with each human is a good example.

These different types of data pose different require-
ments on storage, synchronization and querymechanisms
due to each having different characteristics. Low-level
sensor data is typically very well structured and normally
acquired in high volumes with high frequency. It is impor-
tant that efficient data structures are used for storage
and retrieval. This data is typically retrieved with simple
queries by requesting sets of ordered and timestamped
data points. High-level semantic data, on the other hand,
requires low-volume for storage and is normally gen-
erated with low frequency, but it requires more com-
plex query mechanisms. High-level semantic knowledge
require structures and representations suitable for dis-
tributed querying, merging and synchronization. Figure 6
depicts this informatic situation for several agents.
Each SCModule as shown in Fig. 7 consists of three

conceptual components:

– A PostgreSQL database - This database generally
stores low-level sensor data and intermediate data, in

Fig. 6 In a multi-agent system each agent is equipped with its own
SCModule providing its particular perspective of the world. To
participate in collaborative missions it is often necessary for agents to
access information from other agents’ SCModule such as query for
knowledge stored or request the transfer of data

Fig. 7 SCModule associated with each agent

addition to any table-based information used by the
agent.

– A repository of RDF Documents/Graphs - This RDF
Document/Graph repository includes both
object-level semantic content in addition to metadata
representations of low-level sensor data and
intermediate-level data stored in the PostgreSQL
database. They are these structures that will be
shared and synchronized between agents by the
Knowledge Database Manager.

– A Knowledge Database (KDB) Manager - The KDB
Manager is responsible for the management of the
PostgreSQL database and the RDF Document/Graph
repository. It also supports communication with
other agents and handles dataset generation
processes, in addition to the execution of
synchronization and dataset transfer algorithms
between agents.

In order to represent high-level semantic information,
SCModule’s use the Resource Description Framework
(RDF) [16]. RDF provides a representational foundation
for the Semantic Web and was developed within the
World Wide Web Consortium (W3C). The RDF frame-
work has a very simple, but powerful set of representa-
tional primitives. Most important are RDF Triples consist-
ing of a subject, predicate and object. Subject and object are
nodes in an RDFTriple and predicate is a label for the edge
connecting them that expresses a relationship between the
subject and the object. Subject and predicate are specified
using Internationalized Resource Identifiers [17] (IRI’s),
that provide a unique identity to any subject or predicate,
while object can have any value including an IRI.
It is useful to view RDF Triples graphically (see Fig. 8),

since collections of such interconnected triples can

Fig. 8 Components in an RDF Triple
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be conceptually viewed as RDF (knowledge) Graphs.
Logically, an RDF Triple (subject, predicate, object) to
an atomic formula, predicate(subject, object). This cor-
respondence is very powerful since it provides formal
semantic interpretation of collections of RDF Triples
as logical theories. There are many extensions to the
RDF specification such as RDF Schema (RDFS) [18] and
the Web Ontology Language OWL [19] which extends
RDFS and is used for specification and reasoning about
ontologies.
Although a collection of RDF Triples can be viewed as

an RDF Graph, such graphs are encoded as RDF Docu-
ments. Consequently, we use the terms RDF Document
and RDF Graph more or less interchangeably in the paper.
In [20], we present an extended version of an RDF Docu-
ment, denoted RDF⊕ Document, that is given as input to
the RGS System used to synchronize shared RDF Docu-
ments between agents. A common way to store and access
content in an RDF Graph is to store the triples in an SQL
database, create appropriate RDF Views for the content,
and then use SPARQL (SPARQL Protocol and RDF Query
Language) [21] together with these RDF Views to query
RDF Graphs.
This is the approach we take. The KDB Manager in an

agent’s SCModule provides the ability for the agent, and
other external agents, to access and query RDF Graphs
through the use of SPARQL. From an implementational
perspective, all RDF Graphs are represented in table form
in the PostgreSQL database. In this case, the KDB Man-
ager has a library of views (schemas) created using RDF
View [22]. RDF View provides a means of automatically
converting any SQL table into a set of RDF Triples. The
Sparqlify language [23] is used to specify RDF Views.
Low-level sensor data and intermediate data is stored

in SQL tables in order to efficiently support high volume
and frequency data storage and retrieval via use of a Post-
greSQL database and its associated SQL query language.
Theoretically, one could translate any SQL tables into RDF
Graphs, but it has been shown that SQL databases have
on average between 5 to 10 times higher performance
than SPARQL databases [24]. This is one reason we retain
a conceptual separation between low- and intermediate-
level data, with high-level semantic data in the KDB.
Although an agent can also access raw sensor data in

the PostgreSQL database via the KDBManager using SQL
(or SPARQL, if the requisite RDF Views have been cre-
ated), such direct querying of raw data has limited usage
in the types of missions we envision. Instead, collections
of raw data are bundled as a dataset and information
about its contents is represented as metadata using RDF
Graphs. Metadata in this context is high-level semantic
information about a collection of sensor data acquired
by an agent during an information gathering mission.
Agents query metadata about respective datasets in order

to determine what raw sensor data a team of agents has
collected. Datasets represent only a subset of information
an agent can have, but this form of information and its
conceptualization as a dataset, is practical and efficient in
data-collection missions.
Each agent has the ability to declare RDF Documents in

its KDB as public or private. Only the public information
will be accessible to other agents. One could imaginemore
fine-grained dynamic approaches to access-control, such
as mission-based or agent role-based access control, but
this is left for future work.
A more query-centric and implementational view of

the SCModule is shown in Fig. 9. All raw sensor data,
intermediate- and high-level semantic data resides in the
SQL Database (PostgreSQL). The low-level data is stored
using tables with a schema specific to the type of data,
while the high-level symbolic data is stored in tables with a
schema suited for storing RDF Triples. These components
are visualized with blue boxes in the figure.
The KDB provides four types of APIs to access the data

stored in the SQL Database (orange boxes in the figure).
First, a high-level mapping between tables and program-
ming language objects is provided using Active Record
[25]. Second, the data in tables can be queried directly
using SQL. The two remaining APIs are compatible with
Semantic Web technologies. Namely, SPARQL in combi-
nation with RDF Views and RDF/XML, Turtle (or other
formats) can be used to access data represented as RDF
Triples in the SQL Database. These interfaces are used by
the KDB Manager, user interfaces or external Semantic
Web frameworks. In an SCModule, the application layer
and the query interface for the KDB are handled by the
KDB Manager.

4 Datasets
The focus of this paper is on complex data collection mis-
sions using multiple robotic systems with human inter-
action. Consequently, we specify a special structure, a

Fig. 9More detailed SCModule architecture for a single agent. All data
is stored in SQL tables, and it can be queried through SQL or through
semantic queries (SPARQL). The application layer handles interfaces
between the KDB and a robot, a human or general sources of
knowledge such as the Semantic Web
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dataset3, that is the result of any data collection mission.
Additionally, agents usually require specific subsets of raw
or intermediate data specified as datasets for decision
making processes during mission operation. For exam-
ple, an agent may want to access part of a 3D map or an
orthophoto associated with a specific region in an opera-
tional environment. Consequently, datasets should be able
to be created dynamically as subsets or aggregations of
already existing datasets.
The description of a dataset is characterized by high-

level semantic information which describes, references
and annotates low- or intermediate-level data structures.
Each dataset is identified by a unique Uniform Resource
Identifier (URI). This metadata description is stored as
an RDF Graph. High volume data, such as point clouds,
images, etc., cannot generally be exchanged efficiently
between agents at periodic intervals, but metadata about
datasets can be efficiently exchanged.
Raw sensor data collections are grouped in datasets con-

sisting of the actual raw sensor data that is stored in a
PostgreSQL database and the associated metadata repre-
sented as an RDF Graph. In the synchronization processes
managed by the KDB Manager, it is the metadata asso-
ciated with datasets that is synchronised between agent
platforms.When an agent does need to access and acquire
actual raw sensor data from another agent, the agent
would need to make an explicit request that the sensor
data should be downloaded from another agent using the
Dataset Transfer Protocol presented in Section 6.

4.1 Dataset representation
A dataset D consists of a set of data points {di} which
can be:

– Raw sensor data, such as images and image
sequences, LIDAR scans, IMU frame sequences, GPS
positions, robot poses, etc.

– Results of sensor fusion algorithms that combine
different types of raw data, such as a sequence of
robot poses that use both IMU and GPS data, or the
locations of humans or building structures, derived
from complex classification algorithms.

– Any other high-volume data acquired from external
services, such as systems based on Semantic Web or
GIS technologies.

Data points are stored in database tables according to
their types. The tables contain a set of fields that are
specific to the type (for instance, IMU contains fields for
linear acceleration and angular velocity, as well as covari-
ances). All data points are associated with the URI of the
dataset they belong to.

3The sensor data based datasets considered here are different from RDF
Datasets.

Dataset descriptions are defined using a collection of
RDF Triples:

– An URI of a dataset, for example ex:dataset1.
– A geometry corresponding to the area covered by the

dataset, for example: (ex:dataset1, geo:hasGeometry,
"POLYGON((...))").

– A type indicating the type of data, for example,
image, LIDAR scan, victims (salient points
representing potential victim locations): (ex:dataset1,
aiics:dataset_type, aiics:points_cloud).

– A list (possibly empty) of other datasets (URIs)
included in this dataset. This is useful to allow the
modular structuring of a dataset into smaller
component datasets: (ex:dataset1,
aiics:dataset_include, ex:dataset1)
(ex:dataset1, aiics:dataset_include, ex:dataset 2).

Figure 10 shows an example RDF Graph representing
metadata for two point cloud datasets, where one is a
subset of the other. For more examples of sensor data
representations, see Appendix A.

4.2 Dataset relation to agents
Given a team of agents, each agent stores a collection of
RDF Graphs as part of the KDB in its SCModule. The
union of collections of these RDF Graphs virtually rep-
resents the global knowledge of a team of heterogeneous
agents. Since, the data/knowledge is distributed in multi-
ple databases and owned by different agents, no agent has
direct local access to the complete spectrum of informa-
tion associated with a team. In order to gain access to the
required information necessary for achieving a specific
mission goal (e.g. a global map of the operational environ-
ment), the agents have to collaborate to fully (or partially)
synchronize their data/knowledge resources, or to even-

Fig. 10 RDF Graph representing metadata for two point cloud
datasets, where ex:dataset 2 is a subset of dataset ex:dataset1
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tually exchange raw sensor data. The synchronization
process is intended to be fully automated. It occurs asyn-
chronously, in particular when a team member updates a
public RDF Document subscribed to by other agents.
Each agent is identified uniquely by its own URI.

Datasets are coupled to specific agents by the creation of
RDF Triples that relate the unique agent URI to datasets
(also stored in RDF Graphs) via the following relations:

– has - which indicates that an agent has a copy of the
raw data associated with the dataset in its database.

– created_by - which indicates which agent has
acquired or processed raw data.

– created_from - which indicates that a dataset was
created using raw data from another dataset. For
instance, a point cloud can be the result of combining
multiple LIDAR scans together from different agents.

Figure 11 shows an example of a set of datasets owned
or shared by two UAV platforms and one human operator.

4.3 Dataset discovery
Agents are aware of their team members via their unique
URIs and by leveraging identification functionality in the
framework. Additionally, as agents act in operational envi-
ronments and create datasets, each maintains an RDF
Document listing those datasets and other information
publicly available. A publish-subscribe ROS-based strat-
egy is used to declare publicly accessible documents that
can be subscribed to by any agent. An agent’s RDF Docu-
ment listing public datasets is published by default. Gen-
erally, an agent subscribes to all public datasets specified
by this RDF Document for each team agent, although

Fig. 11 An example of a set of datasets and the relationship between
them. There are three datasets (in blue) resulting from an exploration
mission, created by two UAVs. A point cloud dataset (in orange) was
created by fusing two LIDAR scan datasets. A building dataset (in
green) was created by processing the point cloud and an image
dataset. The graph shows how each dataset was created and also
which agent currently holds a copy of a dataset

the subscription strategy can be modified by any agent at
any time.
This team awareness implies that agents have the abil-

ity to query each other locally through SPARQL interfaces
managed by their KDB Managers. For instance, if one
agent is interested in a specific geographical region, it
can use its synchronized shared information and discover
what type of information and data associated with that
geographical region is available from the team.
Figure 12 shows an example of a set of multiple syn-

chronized datasets created and partially shared by a team
of agents and how they subscribe to the relevant RDF
documents of interest (datasets).
In order to exchange the actual raw sensor data asso-

ciated with a dataset as described by its metadata, the
delegation framework is used with a TST (Task Speci-
fication Tree) containing two nodes for uploading and
downloading raw data between the corresponding agents.
In the Delegation Framework, a TST is both declara-
tive and executable, so such TSTs essentially drive the
execution of dataset transfer processes. Downloading is
executed on the agent receiving the data, where it first
sets up the proper data storage capability. Uploading is
executed on the agent sending data, where it extracts the
specific data in its KDB and then sends it on the network
to the receiving agent. The Dataset Transfer Protocol and
processes are described in Section 6.

4.4 Datasets andmulti-Agent data collection missions
In a typical collaborative exploration scenario, each agent
explores part of the environment, stores data collected
during a mission locally, and shares meta-information
about the collected data as a dataset with other agents
that subscribe to that dataset. Raw sensor data is only
exchanged between agents if required. Some examples of
when an agent would need large quantities of raw sen-
sor data would be for visualization by a ground operator,

Fig. 12 Example illustrating a team of four agents creating datasets
and synchronizing selected metadata among themselves. The data
stored in an agent is represented by gray boxes. Agents store
different types of data (e.g. images or LIDAR scans) as datasets and
the metadata associated with each dataset is represented as an RDF
Graph. Each agent stores different datasets and it subscribes to
selected documents. The dashed line shows examples where RDF
Graphs are synchronised between agents
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for backup purposes, or for further processing such as
extracting higher-level semantic information from the raw
data. This could involve people identification or classifi-
cation of building structures which would use specialized
algorithms local to an agent.
Figure 13 shows a typical data collection mission evo-

lution from the perspective of the data/knowledge that is
locally available to several interacting agents. The setup
involves two UAVs and one human operator. As can be
seen, metadata about collected sensor data is synchro-
nized between agents continuously while actual sensor
data is exchanged only if an agent explicitly requests it.
This is a by-need strategy. These two processes are con-
sidered in detail in the following two sections.

5 RDF graph synchronization
In the HFKN Framework, high-level semantic informa-
tion is represented as RDF Graphs, which are encoded
as RDF Documents. An RDF Document can contain
one or more RDF Graphs. Lower-level data, for exam-
ple, from sensors, is handled differently as described in
the previous sections. This split allows for efficient low-
bandwidth/high-level knowledge synchronisation and on-
demand access to high-bandwidth raw sensor- and inter-
mediate data.
Agents use RDF Graphs to store various types of infor-

mation, such as list of salient objects, metadata about
datasets (Section 4), general knowledge useful for deci-
sionmaking and planning [26], etc. Throughout amission,
agents make changes to these RDF Graphs. For instance,
while collecting sensor data and processing it, an agent
will need to update the metadata of the associated dataset.
To achieve a common view of the agents’ shared knowl-
edge the HFKN Framework requires an efficient and

robust RDF Graph Synchronization (RGS) System that
will enable agents to synchronize their RDF Graphs.
The requirements for the RGS System used by the

HFKN Framework are driven by constraints and practi-
cal demands of in-the-field search and rescue operations,
such as unreliable communication and limited bandwidth.
The RDF Graph synchronization approach has to have
two fundamental properties to account for the communi-
cation constraints. First, the RGS process needs to be fully
automatic and cannot rely on any human intervention.
This property is associated with the fact that communi-
cation between robotic agents and command and control
centers or human agents is not guaranteed at all times.
Second, the system has to handle situations where the set
of agents participating in the synchronization process can
change over time due to communication interruptions or
as agents join or leave missions.
To fulfill these requirements, an automatic and decen-

tralized RDF Graph Synchronization System, called RGS⊕
[20] has been developed. Its design was inspired by solu-
tions used in code versioning systems such as GIT. The
RGS⊕ System is capable of automatically, promptly, and
continuously integrating knowledge created by the agents.
The system is also robust against interruptions in commu-
nication and agents joining or leaving the synchronization
within the collaborative team.
The RGS⊕ System uses an extended version of the

RDF Document concept, called RDF⊕ Document, which
keeps track of a complete history of the changes made
by an agent to an RDF Graph. Each change constitutes a
revision that is cryptographically signed to authenticate
the authorship. The RGS⊕ System allows agents to adver-
tise selected RDF Graphs made public and shared with
other agents. Agents have to explicitly decide to subscribe

Fig. 13 A timeline illustrating an example collaborative exploration scenario involving two UAVs (UAV 0, UAV 1) and a human operator (OP). The
UAVs perform two missions independently at different time points. The metadata describing collected sensor data is synchronised between all
three agents after each mission is completed. The datasets collected duringMission 0 andMission 1 are only available on a UAV which performed
the respective mission. At the end the OP would like to visualise both datasets and requests to download the sensor data from each UAV
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Fig. 14 RDF Document Synchronisation between four agents

to a publicly available graph that they are interested in
using or contributing to. Figure 14 shows an example
where four agents have different local RDF Documents.
Agents 0, 1, and 2 synchronize RDF⊕ Document A, while
Agent 3 does not use or contribute to Document A.
Figure 15 shows a schematic view of the RGS⊕ Sys-

tem. Internally, the different components of an agent, i.e.
Delegation Module, Scanning Module, make changes to
the RDF Document during the execution of missions.
These changes are broadcasted by the REVISIONDISTRI-
BUTION mechanism. When new revisions are received by
the REVISIONINTEGRATION process, the RGS⊕ System
checks if these revisions can be directly integrated into

the RDF Document. If that is the case, the changes are
simply applied to the local RDF Graph. If the agent has
made changes to its own local copy of the RDF Graph,
the received changes need to be combined by merging to
avoid potential conflicts. The operation of merging multi-
ple RDFGraph revisions is performed by themergemaster
which is selected among the set of participating agents.
The election process is managed by the MERGEMASTER-
ELECTION mechanism. To decide when an election is
started, agents broadcast a status message which allows
them to know the composition of the synchronization
coalition. Once the merge master is selected, the mas-
ter requests all necessary revisions to perform the merge

Fig. 15 Schematic view of the RDF⊕ Document synchronisation mechanism and processes involved
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operation. The merge operation results are then sent to
individual agents to apply them to their local RDF Graph
copies.
Detailed description of the RGS⊕ System and its empiri-

cal evaluation is provided in [20]. Theoretical analysis and
empirical evaluation of the algorithmic complexity of the
RGS⊕ System is described and shown that its algorithms
have a quadratic complexity in the number of agents and
changes. Realistic scenarios have been tested to demon-
strate that the RGS⊕ System is suitable for synchronizing
the metadata of datasets and other types of symbolic data.

6 Dataset transfer protocol
RDF Graph synchronization is used to exchange semantic
information and metadata automatically between agents.
Bandwidth intensive data, such as point clouds or images
are not exchanged automatically. Instead, this kind of
lower-level data is encapsulated in datasets and associated
withmetadata represented as RDFGraphs, as presented in
Section 4. The metadata is synchronized between agents
using the synchronization protocol described in Section 5.
When an agent needs to access the actual bandwidth
intensive information, a dataset transfer protocol is used.
The focus of this section is on how this is achieved.
An agent is aware of the existence and the location of

a dataset from the metadata stored in their local copy of
the RDF Graph. The process of downloading the data for
local use is achieved through the use of the delegation
framework. When the need for data transfer arises, a Task
Specification Tree (TST) is generated consisting of two
types of nodes:

– The Send node is instantiated by the agent that has
the requested data and is able to provide it to others.

– The Receive node is instantiated by the agents that
require the data.

During the delegation process (see Section 2), which is
usually initiated by the receiving agent, a sending agent is
selected. As the data can be available from several agents,
the criteria for choosing a sender can include constraints
such as the battery level, the available bandwidth, or if the
agent is expected to stay in communication range. The
delegation process results in the generation of the TST
shown in Fig. 16. In some cases, multiple agents may want
to receive the same dataset. For this reason the TST can
contain multiple Receive nodes as can be seen in the
figure. The data transmitted between agents is split into
chunks and transferred sequentially.
An overview of the data exchange protocol is pre-

sented in Fig. 17. There is only one sender that executes
Algorithm 1 and one or more receivers that execute
Algorithm 2.
The protocol uses the following messages:

Fig. 16 A generic Task Specification Tree (TST) used to transfer the
datasetD from agentA0 to agentsA1, ..,An . The Send and Receive
nodes are executed concurrently by agents

– The Readymessage is used to indicate readiness to
receive data.

– The Datamessage contains a sequence number,
which allows receivers to check whether they
obtained all the data, and an array of bytes containing
a data chunk of the dataset.

– The ResendRequestmessage allows receivers to
request missing data chunks.

– The Errormessage allows participants to indicate
an unrecoverable failure and abort the transfer.

– The ThrottleUp and ThrottleDownmessages
allow the receiver to indicate if the sender can send
messages faster or slower.

– The Finishedmessage is sent by the sender to
indicate that all the data has been sent. This message
contains the last sequence number, so that receivers
can check they received all the data.

The agent responsible for providing data operates
according to Algorithm 1. It knows the list of receivers
from the TST (Fig. 16), and waits for them to be ready
(line 1). The sender retrieves the data from its database
(line 5) and sends it to the receivers (line 9) until all the
data has been sent (line 6), then it sends the finished
message (line 20). The sender checks if it has received a
request for missing data (line 10) and adjusts the transfer

‘

Fig. 17 Protocol for transferring datasets
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Algorithm 1: SENDDATASET

1 WaitForReady()
2 finished ← false
3 τ ← 0
4 until finished
5 V ← RetrieveData()
6 if V = ∅ then
7 finished ← true
8 else
9 SendData(V )

10 whileM ← ReceiveResendRequest() do
11 V ← RetrieveData(M)

12 SendData(V )

13 while ReceiveThrottleUp() do
14 τ ← max(0, τ − 1)
15 while ReceiveThrottleDown() do
16 τ ← τ + 1
17 if ReceiveError() then
18 finished ← true
19 Sleep(τ )

20 SendFinished()

Algorithm 2: RECEIVEDATASET

1 SendReady()
2 failure ← false
3 until failure or ReceiveFinished()

4 V ← ReceiveData()
5 ifMissing(V ) then
6 RequestMissing(V )

7 if Valid(V ) then
8 InsertData(V )

9 else
10 SendError() ; failure ← true
11 if ReceptionQueueSize() > 5 then
12 SendThrottleDown()

13 else if ReceptionQueueSize() = 0 then
14 SendThrottleUp()
15 if ReceiveError() then
16 failure ← true

17 if failure then
18 AbortInsertion()

19 else
20 Finalise()

speed up (line 13) or down (line 15) if needed. If the sender
receives an error message, it aborts the process (line 17).

At the end of the loop, the sender waits (line 19) for the
duration τ , to control the data throughput.
An agent receiving the data operates according to Algo-

rithm 2. It starts by sending the ready message (line 1).
It then executes the main loop (lines 3–16) that han-
dles the data transfer including error handling, requesting
missing data etc. The loop terminates either when the
agent receives all data (i.e. receiving of the finished mes-
sage) or when an error occurs (line 3). The process starts
with receiving of the data message (line 4). Based on the
sequence number of the received message, a check is done
if there is any missing data (line 5), and if that is the
case the agent requests it. Before the agent inserts the
received data into its database, the validity of the message
is checked (line 7). In case the data is invalid the error
message is send and the execution of the main loop is
interrupted (line 10). The receiving agent can request the
sending agent to change the rate at which data messages
are sent. This is based on the amount of data messages
placed in the reception queue. If the queue has more
than a predefined number (e.g. 5) of messages waiting
to be processed, the receiver sends a throttle down mes-
sage (line 11). Otherwise, if the queue is empty it sends a
throttle up message (line 13). At the end of the loop, the
agent checks if it has received an error message from other
agents (line 15). Once the main loop execution is finished,
the agent can finalize the insertion of data (line 20). In
case the transfer was not successful, the agent removes the
received data from its database (line 18).
The combination of the two algorithms used for data

exchange guarantees two outcomes: either the dataset has
been completely duplicated in all receiving agents, or the
transfer has been aborted. During data transfer between
two agents, three problems can occur: messages are lost,
messages are corrupted, or the communication is inter-
rupted. In Algorithm 2, lost messages are handled by
checking the sequence number and requesting potentially
missing messages in line 5. Corrupted messages are han-
dled by checking the validity of data, for instance, using
checksums, in line 7. Finally, if the communication is
interrupted, it will trigger a timeout. Therefore, the fin-
ish message will never be received in line 3 and the data
exchange will be aborted.

7 Field robotics case study and experiment
The proposed HFKN Framework has been implemented
in prototype and validated through a series of experiments
both in simulation [20] and in real mission scenarios
using multiple UAV platforms. The latter is the topic of
this section. We first provide a short description of the
UAV platforms used in the field study and then proceed
to a description of a multi-agent data collection mission
that uses these UAV platforms. We then conclude with a
description of the rich set of query mechanisms that are
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Fig. 18 Experimental platforms: DJI Matrice 100 equipped with a Hokuyo UTM-30LX LIDAR sensor (left), DJI Matrice 600 Pro equipped with a
Velodyne Puck LIDAR sensor (right)

part of the HFKN Framework and have also been used in
the field study.

7.1 UAV platforms used in the field test
Two types of UAV platforms were used for experimen-
tation in the case study. The first, shown on the left of
Fig. 18, is a modified DJI Matrice 100. It has a maximum
takeoff weight of 3.6kg and 1.2kg of payload capacity. The
platform measures 100cm between propeller tips. It can
fly with speeds up to 22m/s and has a maximum flight
endurance of 22 minutes. The platform is equipped with a
Hokuyo UTM-30LX LIDAR, which is a single scan device
with a guaranteed range of 30m (60m maximum).
The second type of platform, shown on the right of

Fig. 18, is a modified DJI Matrice 600 Pro. It has a
15.1kg maximum takeoff weight, 6kg of payload capac-
ity, maximum flight speed of 18m/s, and 35 minutes of
flight time using 5.5kg of payload. It measures 167cm
between propeller tips. The GPS system on-board uses
a Real-Time Kinematic (RTK) positioning technique to
deliver centimeter accuracy measurements. The platform
is equipped with a Velodyne PUCK LIDAR sensor, which
has an effective range of 100m and uses 16 scan channels.
A LIDAR mounting mechanism developed and deployed
on the DJI Matrice 600 Pro allows for choosing the sensor
orientation depending on the applications or missions at
hand.
Both platforms are equipped with the same type of

onboard computer system. It is an Intel NUC Kaby
Lake i7-7567U CPU platform in a custom enclosure
equipped with 16GB of RAM and 500GB SSD of stor-
age. The systems interface with the platforms and run the
software modules associated with the Delegation Module
and the SCModule. The communication with the ground
station for both platforms is realised using 5GHz WiFi
connections.

7.2 Field-Robotics case study: collaborative 3Dmodeling
In this field experiment, we want to demonstrate how
multiple agents can explore different parts of an opera-
tional environment, share the resulting collected informa-
tion, and reuse existing information from other missions.

The mission leverages functionalities from the HFKN
Framework and the Delegation Framework and each
robotic agent has a Delegation Module and an SCModule.
For human agents, it is assumed that they can interface to
the collaborative system through Command and Control
centers, or if in the field, through laptops, smartphones, or
tablet systems with access to both the Delegation Module
and SCModule.
Let’s imagine a scenario where data has been collected

during three previous missions. A rescue operator needs a
3D model of a region of the operational environment, for
instance, to inspect the state of buildings before planning
the next phase of the rescue operation. In such a scenario,
the operator will request the HFKN Framework to pro-
vide Lidar data for the region of interest. Then the HFKN
Framework would provide the data, either by accessing
already collected data or by generating and delegating
scan missions4 to UAVs. Once the operator has received
the Lidar data from the HFKN Framework, he or she can
process it to generate a 3D model that can be stored as a
dataset in the operator’s local database for future usage.
To demonstrate this scenario, we have divided the

experiment into four scan missions shown in Fig. 19 with
different types of team interaction and use of collected
distributed information:

– For the first three Scan missions (A, B and C), three
different UAVs (UAV0, UAV1, UAV2) are tasked by a
ground operator OP to explore non-overlapping
areas of the operational environment of interest. This
may be done sequentially or concurrently since the
regions are non-overlapping. Missions are set up and
executed autonomously through the use of the
Delegation Framework.

– At the end of mission C, the ground operator OP
requests the transfer and download of the resulting
scanned data from UAV2. This is done using the
Dataset Transfer Protocol (Section 6).

– After viewing a 3D model generated for region C, the
ground operator determines that more information is

4A Scan mission is a generic type of mission in which agents collect data with
their sensors, such as camera or LIDAR, over an area.
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Fig. 19 Division into four scan missions A, B, C and D

required for a larger region that overlaps with the
three previously specified regions, A, B and C.

– The ground operator OP sets up the fourth mission
using the Delegation Framework to gather a full scan
of region D by UAV0. Since raw data for regions A, B
and C already exists, the fourth mission by UAV0 is
automatically tasked to gather data from the region
D′D = DD \ (DA ∪ DB ∪ DC).

For each Scanmission attempted, the following steps are
applied by an agent:

– First, check if any relevant scanned data is already
available in the agent’s KDB. This is done by
executing an SPARQL query on the metadata for the
dataset, checking for any intersections between the
raw data areas previously covered by the agent and
the target dataset.

– If no such data (or only partial data) is available in the
requesting agent’s KDB, an attempt is made to set up
a task to copy any relevant data for the geographic
region from any remote agents on the team. The copy
is done through a combination of queries and use of
the Dataset Transfer Protocol described previously.

– After doing this, a check is made to see if data for the
geographic region of interest is complete with full
coverage. If not, the agent can query its KDB to
compute those remaining regions in the geographic
area not yet covered. The agent can now specify a
Scan mission to gather the remaining data.

– Before executing the Scan mission, the agent
initializes an empty dataset for the geographic area of
the mission. During the execution, the agent collects
data and associates it with the dataset.

– At the end of the mission, the agent would have the
necessary raw data in its KDB for the geographic
region in question. Additionally, due to the periodic
synchronization of knowledge in each of the team

agent’s KDB, they would all have a new dataset with
information about where the raw data resides in
other agents.

Before mission A, B and C, no data for these regions
is stored, either by the individual agents or the team as a
whole, so there is no exchange of raw data. Each UAV col-
lects the requisite data associated with its respective task
during the execution of each mission and stores it in its
local KDB. We will refer to the resulting datasets as DA,
DB and DC . No raw data is exchanged between UAV0,
UAV1, UAV2 at the end of their missions. Metadata for
DA,DB, andDC has been synchronized in the KDBs of all
team members.
At the end of mission C, by request of operator OP, raw

data for the dataset DC is copied to the operator’s ground
station using the data exchange protocol. The association
between available datasets before the start of mission D is
shown in Table 1.
For the mission D, the OP operator queries its datasets’

metadata and finds that datasets DA, DB and DC overlap
with the operator’s area of interest. Since OP already has
a copy of DC , it only needs to download raw data from
DA and DB and set up a mission for the remaining region
DD \ (DA ∪ DB ∪ DC).
The TST generated for mission D is shown in Fig. 20.

First, the ground operator’s station should download con-
currently datasets DA and DB. Then, it delegates the final
UAV Scan mission to collect the remaining scan data to
UAV0. This TST is the actual TST generated by the del-
egation framework and intended to be executed by the
ground station agent and UAV0 autonomously (The S and
C in the control nodes of the TST refer to Sequential nodes
and Concurrent nodes, respectively).

Table 1 The association between available datasets after
execution of different missions

DA DB DC DD

Dataset content after
mission’s A, B and C are
completed.

UAV0 X

UAV1 X

UAV2 X

OP X

Dataset content after
mission D is completed.

UAV0 X X

UAV1 X

UAV2 X

OP X X X
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Fig. 20 TST for mission D. Yellow indicates leaf nodes, red indicates the transfer node that failed

To demonstrate the system’s robustness, we simulated a
communication failure between agent UAV1 and OP, so
that DB was not transferred to OP during mission execu-
tion. OP is made aware of this. It would either need to
attempt a new data exchange process or start a new explo-
ration mission to make sure that DD covers the requested
area.
Table 1 shows the raw dataset associations to team

agents after missionD is completed.UAV0 has performed
two scan missions: for region A and for the latest request
from the operator. That is why it has a copy of the raw data
associated with datasets DA and DD. At the end of mis-
sionD, all metadata associated with all datasets generated
is synchronized, and general queries about the operational
region can be made by the agents of the team, where each
has a partially shared situation awareness by virtue of each
agent’s sharing respective metadata about datasets.
Figure 21 shows the resulting point clouds for each mis-

sion as well as the final point cloud accessible to the
ground operator OP. Here one can observe that point
cloud data for region B is missing. This was due to the
communication breakdown.

7.3 Querying and query capability
The HFKN Framework includes powerful query capabil-
ity for human and robotic agents to acquire information
about operational environments in different modalities.
The resulting answers to queries can be used not only
for situation awareness and decision making, but also to
specify information gathering missions based on missing
information. This was shown in the case study. We now
consider RDF query mechanisms [27] in more detail and
provide some additional examples.
Robotic or human agents, can query one agent individu-

ally using SPARQL, or several agents simultaneously using
Federated Queries [28]. From a mission perspective, a
ground operator’s queries play a special role where multi-
modal interfaces can be used to advantage. In this case,

rather than the human agent specifying SPARQL queries
in detail, a graphical user interface has been developed
that permits human agents to define queries graphically.
For instance, given a map of an operational environment,
a human operator can draw regions of interest (ROI)
graphically, state what kind of information from that area
they would like and press a query button. The interface
then translates the graphical query into an SPARQL query
which is directed to one or more agents on the team. The
query reply can then be depicted both graphically and
textually on the operator’s screen.
The execution of an SPARQL Query from a ground

operator perspective uses the following components
(shown in Fig. 22):

– User Interface - A user selects an area of interest and
a data type of interest (e.g. list of buildings with their
3D models, potential victim locations with pictures,
etc.). Based on that selection the User Interface then
automatically generates an appropriate SPARQL
Query.

– SPARQL Engine - The SPARQL Engine converts the
SPARQL Query into a corresponding SQL Query.
After the query is executed it also converts the result
back into an SPARQL Result.

– SQL Engine (in this case PostgreSQL) - The SQL
Engine is responsible for execution of the SQL Query
over the selected RDF Graphs (either stored as SQL
tables or accessible through an SQL View).

– RDF View Manager - The RDF View manager then
generates an SQL View based on an RDF View
definition, i.e. mapping any SQL Tables to an RDF
Graph representation.

When a user selects an area of interest in theUser Inter-
face, together with a data type of interest, an SPARQL
Query is generated and sent to the SPARQL Engine which
converts it into an SQL Query over a virtual table with
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Fig. 21 Resulting point cloud from flying the four missions. The rectangles represent the four datasetsDA toDD . The missions are run in sequence.
Figure 21a to d show the results of the individual scan missions, while Fig. 21e shows the point cloud generated by combining data fromDA ,DC

andD′
D

Fig. 22 Example of a SPARQL Query execution. Software components are shown in blue (i.e. User Interface, SPARQL Engine, SQL Engine and RDF
View Manager). The data is shown in green (i.e. Triples SQL Tables, Triples SQL View, SQL Tables and RDF View Definition). The SQL and SPARQL
Queries and their results are visualized in red. The database schema defines the storage structure of RDF⊕ Documents, SQL Tables, and the RDF
View Definition used to map arbitrary SQL tables to a set of RDF Triples. The schema also defines the structure of queries used to access the data and
the conversion from SPARQL to SQL for the mapping between RDF Graph reference and actual SQL Tables and Views
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three fields (subject, predicate, object). This virtual table
is the union of a set of RDF Graphs (represented as SQL
Tables) and a set of RDF Views (mapping between any
SQL Tables and an RDF Graph representation). The RDF
Views are generated by the RDF View Manager based
on an RDF View Definition and an existing set of SQL
Tables. Once the SQLQuery has been executed, the results
are returned to the SPARQL Engine which generates an
SPARQLResultwhich canbe visualised in theUser Interface.
Schemas are used by the user interface to define the

structure of allowed queries, and during execution by
the SPARQL Engine to understand the mapping between
RDF Graph URLs and the SQL Table or View, where the
RDF data can be queried. For details and examples, see
Appendix B.
In the case study, we showed how to collect infor-

mation through specification of geographic regions or
boundaries. This idea can be leveraged in many different
ways. For example, suppose an operator or human rescuer
is interested in knowledge about surrounding building
structures and would like 3D models of existing building
structures. An example query, given in Listing 2, shows
how this can be done using the data from the case study
missions.
In the case study, LIDAR sensor data and intermedi-

ate point cloud data were collected by several UAV agents
and stored distributively in their respective SCModules.
Additionally, a human ground operator acquired some of
this data through SPARQL queries and the use of the
Data Exchange Protocol. During this process, raw sen-
sor data was stored in the agent’s respective PostgreSQL
databases in table form (see Appendix A). Using the RDF
View system, this data can be accessed using SPARQL as a
high-level query language.
In the following, the prefixes before the URLs will be

used for defining the RDF View and SPARQL query used
to retrieve 3Dmodels of building structures in a geograph-
ical region:

– askcore_pointclouds: http://askco.re/pointclouds#.
This prefix is used for definitions related to point
clouds. askcore_pointclouds:patch is the predicate
that specifies the raw data of the point.
askcore_pointclouds:intersection is a function that
computes the intersection of a point cloud with a
geometric object. askcore_pointclouds:union
computes the union of a set of point clouds.

– askcore_types: http://askco.re/types#. This prefix
designates data types stored in the database, such as
askcore_pointclouds:pointclouds.

– askcore_graphs: http://askco.re/graphs#. This prefix
designates the RDF Graphs used in the system.
askcore_graphs:pointclouds_view is an RDF View

which enables one to query point clouds stored in
SQL Tables using SPARQL queries.

– geo: http://www.opengis.net/ont/geosparql#. This is
the standard prefix for GeoSPARQL [29], which
enhances RDF and SPARQL with features specific to
GIS.

– geof : http://www.opengis.net/def/function/
geosparql/. This is the standard prefix for functions
defined by GeoSPARQL.

An RDF View mapping the SQL table for point clouds
to an RDF Triple representation using Sparqlify [23] is
shown in Listing 1.

The SPARQL query presented in Listing 2 is then used
to retrieve 3D point clouds corresponding to the 2D foot-
prints of buildings in the regions of interest from the case
study.

The result of the execution of the SPARQL query is
shown in Fig. 23. For additional details about sensor data
representations used and examples of other queries, see
Appendices A and B.

8 Related work
The HFKN Framework envisioned is unique in its
approach, but does take inspiration from some of the chal-
lenges and problems in related topic areas. In this section,
we consider some of this work most relevant to the HFKN
Framework.

Distributed Knowledge and Multi-Agent Systems
Multi-Agent Systems (MAS) [30, 31] have direct relevance
to the HFKN Framework since we view each robotic sys-
tem as an agent with capabilities to plan and reason. In
MAS, the topics of distributed and common knowledge

http://askco.re/pointclouds#
http://askco.re/types#
http://askco.re/graphs#
http://www.opengis.net/ont/geosparql#
http://www.opengis.net/def/function/geosparql/
http://www.opengis.net/def/function/geosparql/
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Fig. 23 Results of querying the operator’s database for a point cloud
representation of an existing set of buildings based on the point
clouds acquired in Section 7.2. Note that some requested buildings
have no point clouds in the team KDB repositories

are central to logical approaches to multi-agent problem
solving and inference [32]. In the HFKN Framework, each
agent has its own local knowledge in the form of RDF
Documents/Graphs that are distributed across agents.
The multi-agent system consisting of a team of agents
has common knowledge in the form of the shared, syn-
chronized RDF Documents/Graphs. Collections of RDF
triples (RDF Documents) can be viewed logically [33–35].
This being the case, certain kinds of querying mech-
anisms, analogous to deductive databases [36], can be
viewed as doing logical inference. SPARQL-DL [37] is an
interesting example of this.
Communication among agents is also an important

topic in MAS. A common approach for communication
in MAS is to use an implementation of the Agent Com-
munication Language (ACL) such as FIPA ACL [38]. ACL
contains mechanisms for agents to query other agents and
transfer beliefs between them. This provides an infras-
tructural mechanism for belief transfer but also requires a
semantics for beliefs such as that used in the BDI approach
[39, 40]. It should be noted that the Delegation Framework
and its integration with the HFKN Framework, does use
ACL and speech acts for general communication between
agents and that general communication mechanism car-
ries over for use with SCModules.
One of the challenges with such multi-agent systems

that is related to belief transfer is for agents to determine
what agents to ask for certain information required dur-
ing a mission. Sending a broadcast is not always practical,
since for large numbers of agents, this approach could
degrade the available bandwidth of the communication
network. A potential solution involves using matchmaker
agents [41] that hold information about which agents
can answer questions. Our approach is much different
because each agent’s public/shared information is syn-
chronized, so the collective knowledge from a team is
accessible directly to each agent. Consequently, each agent
can then internally query such information. Raw sensor
data is indirectly accessible through metadata and dataset

transfer protocols, but an agent can still directly query a
dataset’s metadata to acquire useful knowledge.
In Cloud Robotics [42], the functionalities of robotic

systems are usually enhanced using cloud-based solu-
tions. They can be used to offload computations or for
the exchange of knowledge through centralized databases.
The work presented in this paper is capable of han-
dling scenarios where the communication is unreliable or
unavailable, for which it is impractical to rely on distant
servers, such as those implicit in the use of cloud-based
approaches.

Distributed and Federated Database Systems The
main challenge in Federated Database Systems (FDS)
[43, 44] is to provide a unified query mechanism that
hides data inconsistencies. This is often called the
database integration problem [45]. The main challenges
in Distributed Database systems [46–48] is the consis-
tency problem where schema definitions and data should
be consistent and equal across the different database
instances.
Traditional database technology provides common

techniques for storing data and querying data. For
databases running on a single computer and using smaller
amounts of data, data consistency is less of an issue. But
this does not scale for large numbers of users and large
amounts of data. This has led to the development of Dis-
tributed Database Management Systems (DDBMS) [48].
Homogeneous DDBMS are systems where the schema
definitions and data should be consistent and equal across
the different database instances. A common approach to
solving this consistency problem is to use database repli-
cation [47], where a master has write permissions on a
subset of the data, and when changes occur, they are prop-
agated to the slaves. Homogeneous DDBMS also solve the
problem of load balancing between servers. In the case of
Big Data, when a single computer cannot store all of its
data in memory, it is necessary to use a Heterogeneous
DDBMS approach, such as Spanner [46] or Dynamo [49].
Here, the system controls which server stores which data
depending on user needs and system requirements. In
[46], the authors propose a dynamic system to lock tables
so that only a single instance can write on a subset of
the table schema. This approach is also capable of han-
dling inaccuracies in the timestamping of transactions. In
[49] the data is replicated across multiple hosts. Dynamo
trades-off consistency for availability, where data is guar-
anteed to be eventually consistent, that is all updates reach
all replicas eventually. Generally, these systems rely on
a central server or policy for handling the spread and
distribution of data. Their goal is to optimize the effi-
cient accessibility of data by end-users and deal with load
balancing between servers.
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In Homogeneous and Heterogeneous DDBMS, the con-
trol over the availability and writing of data is left to
the system. In Federated Database Systems (FDS), each
database instance is autonomous, in the sense that there is
no assumption as to the individual schema and the avail-
ability and location of where specific data resides. What
is of particular focus is the development of a common
query mechanism across heterogeneous databases. Such
systems have to deal with many types of data inconsis-
tencies, such as naming of concepts, precision, schema
alignment, etc.
FDS attempts to provide unified query mechanisms

that hide data inconsistencies in order to deal with the
database integration problem [45]. A solution to the dis-
tributed mapping of integrated answers to queries was
proposed in [44], where the system is required to be static,
and each database instance must remain in the federa-
tion. A more dynamic approach was recently proposed in
[43], where the FDS is implemented as a graph. When a
query is executed, it is propagated along the graph and
at each node the results are aggregated, correcting the
inconsistencies incrementally.
The HFKN Framework shares some ideas from both

DDBMS and FDS technologies. In the HFKN Frame-
work, the SQL databases associated with each agent, is
not intended to be shared, globally consistent or repli-
cated across agents. These databases are heterogeneous
by design. On the other hand, the schema for rep-
resenting sensor data of any kind is common to all
agents in the system. Even at the RDF Document level
intended to maintain semantic representations and meta-
information about datasets describing collected sensor
data, the HFKN framework does not require complete
consistency. A form of weak consistency is guaranteed as
discussed in [20].
With FDS, the schema (i.e. structure of the data) and

concepts (i.e. the meaning of the data) are the same for
all agents. In the HFKN framework, each agent has full
autonomous control of what kind of data it stores. Agents
can join and leave the federation at any time. This is dif-
ferent from previous work [44] with FDS where an agent
can leave a federation only after obtaining a permission.
In our application scenarios, communication is assumed
to be unreliable. Consequently, the approach proposed in
this paper is designed to handle dynamic changes in the
federation structure without any notice.
Like FDS, our approach does use a unified query

mechanism, SPARQL (SPARQL Protocol and RDF Query
Language) [21] for this collection of shared RDF Docu-
ments/Graphs, but also locally for internal agent queries
of all its RDF Documents, shared and unshared. SPARQL
was developed for querying information stored in RDF
Graphs.

Semantic Web and Robotics Our choice of repre-
sentation for information and knowledge, RDF Docu-
ments/Graphs, is inspired by Tim Berners-Lee’s vision of
a Semantic Web [50–52], where web pages in the World
Wide Web are annotated with representations of their
semantic content in the form of collections of RDF Triples
(RDF Documents) and ontologies and linked across the
WWW. These information structures can be reasoned
about using logical inference mechanisms such as those
based on Description Logics [53], in addition to related
powerful ontology inference mechanisms such as OWL
[19, 53]. Themodern equivalent of these ideas has resulted
in standardization [16, 18, 19, 35] and the linked-data
[54] research area of which knowledge graphs are a prime
example. Many additional tools and technologies have
been developed since the original idea of the Semantic
Web was proposed and these are used in the backbone of
many companies’ knowledge-intensive products.
More recently, there has been a trend toward lever-

aging Semantic Web ideas with robotics [6, 55–59].
Many existing ontologies are available and useful for
describing robotic systems [60, 61] and sensing for
robotics [57].
Several frameworks using Semantic Web technologies

have been implemented on robotics systems. The Open-
Robots Ontology (ORO) [55] presents a processing frame-
work leveraging Semantic Web technologies to enhance
communication between robots and humans. OROmakes
use of a common sense ontology, an events system, amodel
of the cognitive state of other agents, and a long term
memory. In [56], the authors present a method to connect
low-level sensor data and high-level semantic information
using RDF and an ontology for low-level information.
The HFKN Framework relies heavily on Semantic Web

technologies. This choice is due in part to the concep-
tual fit between our ideas and these technologies and the
wider availability of collective knowledge on the Inter-
net provided in the form of ontologies and RDF Docu-
ments/Graphs, the latter often called knowledge graphs.
Due to the similarities, these knowledge sources can be
leveraged, integrated, and used to best advantage by the
collaborative agents in the scenarios we focus on.
Many Semantic Robots frameworks [62, 63] have been

developed with a focus on how to represent knowledge
for heterogeneous systems, rather than how to exchange
knowledge. One of the most mature frameworks combin-
ing Semantic Web technologies and robotics is KnowRob
[64, 65], a knowledge processing framework for robotic
agents. KnowRob supports reasoning over semantic infor-
mation while taking into account planning processes.
KnowRob needs to be used in conjunction with a knowl-
edge base such as the Robot Scene Graph (RSGraph)
[66, 67]. RSGraph is a framework for representing 3D
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information about a robot’s environment in a graph struc-
ture stored in the volatile memory of the robot. Work that
combines RSGraph and KnowRob is presented in [68].
In the HFKN Framework, an agent’s SCModule stores

information in its PostgreSQL database in the KDB. This
architecture results in the information being stored on the
hard drive whereas continually used information is cached
in memory. The benefit of this is that the information is
saved long term and is persistent even when a particular
robot agent goes offline. The information is not dupli-
cated but shared across the modules of a robot. However,
there is additional overhead when accessing the informa-
tion stored in the PostgreSQL database when compared to
the in-memory solution used with RSGraph. Still, efficient
caching minimizes this as an issue.
RSGraph has recently been extended with a synchro-

nization mechanism in [67], which allows the distribution
of RSGraph nodes across a team of agents. Since some
of the information stored in RSGraph can be large (e.g.
point clouds), the authors have implemented a QoS solu-
tion that checks the network’s quality and then down-
samples the information relative to network congestion
levels.
The HFKN framework deals with much more general

forms of synchronisation then those provided in RSGraph.
Additionally, only low bandwidth information is automati-
cally exchanged between agents through synchronization.
Large datasets (e.g. point clouds and images) are only
transferred after an explicit request from an agent. This
results in a by-need philosophy, where agent SCModules
transfer full resolution information only when needed.
Note that there is a throttling mechanism that controls
data transfer bandwidth when using the data exchange
protocol. This is, in fact, a form of QoS mechanism. One
could envision combining these ideas with the QoS tech-
niques used in RSGraph, but we save such issues for
future work.

Applications with Mapping The topic of Distributed
Simultaneous Localisation and Mapping (SLAM) has
some relation to our applications of the HFKN Frame-
work. One of the basic functionalities in any robotic
platform is building amap of the environment.Many algo-
rithms have been developed for a single robot [69, 70],
which deal with the problem of fusing information com-
ing frommultiple sensors in a robot. Such algorithms have
been extended to support fusion of sensor data from mul-
tiple robots. Earlier work involved considering a set of
local maps connected in a global graph shared between
robots [71]. This approach was superseded by introducing
landmarks directly in global graphs [72]. However, such
approaches require a central location for the fusion of the
global map. A decentralized approach was proposed in
[73]. The authors suggested using a version control system

for the map, but this still required a lock when fusing part
of the map distributed between platforms.
A practical application of building a common map by a

group of robots is to solve the problem of exploration of
a large environment [74]. Most of these approaches use
either a centralized server or a global lock, while HFKN
is a dynamically decentralized system. The lock is implicit
in the synchronization algorithm. The approaches con-
sidered here are specific to solving the distributed fusion
problem, whereas HFKN is a more general framework.
Asmentioned earlier, the KDB is GIS (Geographic infor-

mation systems)-like in concept since it stores low-level
sensor data, intermediate information, and high-level
semantic knowledge. Although the KDB architecture is
not layered in the GIS sense, SPARQL queries about spe-
cific geographical regions return information about those
regions at many different conceptual layers.
GIS systems can be used to store a wide range of vector

information (points, lines, polygons, etc. [75]). They have
also been extended to allow storage of 3D information
such as point clouds [76] or point clouds augmented with
semantic knowledge [77]. The latter is directly related
to how the KDB can semantically label lower-level data
geographically.
As the state of an operational environment is contin-

uously evolving, it is natural to use remote sensors to
update GIS [78]. In [79], a centralized GIS server is used to
share rescue information, where autonomous robots push
observations to the GIS server and where rescuers can
then access that information. As discussed previously, the
HFKN Framework collects data and knowledge dynami-
cally via agents yet stores it in a distributed manner. The
HFKN Framework uses a weak form of replicated cen-
tralization in that each agent shares metadata about other
agent’s public data and knowledge. The synchronization
process keeps this data and knowledge weakly consistent
across agents. There is no centralized server or source of
global information.

9 Conclusions
We have presented a general system architecture and
framework, called the SymbiCloud HFKN Framework,
for supporting dynamic, distributed situation awareness
for heterogeneous teams of human/robotic agents. The
system builds upon previous work using a delegation
framework for dynamic task allocation for collaborative
human/robotic systems that is also part of the general
system architecture.
The major focus of the paper has been the description

and specification of core system algorithms for supporting
distributed data and knowledge collection and the storage,
synchronization, aggregation and transfer of such data
and knowledge among teams of collaborating agents. In
this case, our teams have consisted of humans and UAVs.
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Major effort has been placed on incorporating resiliency
into the algorithms and the resulting engineered system
to deal with difficult problems associated with unreliable
communication among agents, out-of-range issues, agents
entering and leaving mission environments, in addition
to the heterogeneity of both the data collected and the
systems used to collect such data. Currently, the HFKN
framework makes a strong assumption that its agents are
operating in secure environments, where all agents are
considered trustworthy and cooperative. In future work,
plans include investigating different aspects related to the
security and trustworthiness of data, for instance, by using
the cryptographic signatures already present in the RGS⊕
infrastructure.
A seamless unification of data, information and knowl-

edge has been achieved through the use of Semantic Web
technologies as a basis for structuring and querying col-
lected sensor data, meta-information about such sensor
data, and post-processed knowledge in the form of RDF
(knowledge) graphs. The system can easily be extended
with additional ontologies other than those described in
the paper to provide richer semantic decision support.
Although the focus of this paper has been on the

dynamic collection of sensor data for constructing 3D
maps and limited object representations such as people
and building structures, the system is general in nature
and any type of semantic information that can be mod-
eled using RDF (knowledge) Graphs could be collected,
represented, processed and queried in a similar manner.
Empirical experimentation in simulation has been per-

formed showing the speed and scalability of the proposed
system and algorithms. Additionally, field experimenta-
tion has been done using emergency rescue scenarios with
teams of UAVs and humans to show the viability of the
ideas in the engineered HFKN system.

Appendix
A Representation of data structures in SCModules
In Section 7.3, Fig. 22, we provided an overview of dif-
ferent ways to query an SCModule using SPARQL. In
this appendix, additional details are provided concerning
some of the basics Schemas and RDF Views used in the

Table 2 Fields of the RDF Triple SQL table

RDF Triple

Type Name Comments

String Subject Subject of the RDF Triple.

String Predicate Predicate of the RDF Triple.

Any Object A complex type which allows to
efficiently store any type of data,
ranging from integers, strings, lists,
Point clouds, images, etc.

Table 3 Fields of the RDF revision SQL table

RDF Revision

Type Name Comments

Uint8[] Hash The unique hash identifying the
revision.

Uint8[] Author The UUID of the agent that created
the revision.

Uint8[] Signature A cryptographic signature (using
RSA) of the hash authentifying the
author.

Uint Timestamp The time when the revision was
created.

HFKN Framework, together with a selected set of SQL
table representations.

Triples table An RDF Graph consists of triples (subject,
predicate, object) which are stored in an SQL table with
three fields presented in Table 2. The SQL table fields cor-
respond directly to the components of a triple (see also
Fig. 8). The type of the object field provides ameans to effi-
ciently store various data types such as integers, strings,
lists, images, point clouds, etc.

RDFDocument An RDFDocument is stored using three
tables:

– A triples tables corresponding to a version of the
RDF Graph, which is available for answering queries
or performing change operations (see Table 2).

– A revision table containing the metadata associated
with each RDF Revision (see Table 3).

– A delta table containing the RDF deltas (see Table 4).

The database also contains metadata about the RDF
Document:

– The revision hash of the current instance.
– The URI used to identify the RDF Graph.

RDFDelta Deltas are encoded using a subset of SPARQL
Update query [21]. Only two queries are allowed, i.e.

Table 4 Fields of the RDF delta SQL table

RDF Delta

Type Name Comments

Uint8[] Parent The unique hash of the parent
revision.

Uint8[] Child The unique hash of the child
revision.

String Delta A SPARQL Update representing the
change between the parent
revision and the child revision.
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Fig. 24 Example of a transformation tree for a single agent. The origin
of the world is represented by the frame world and the root frame for
the agent is body_link

and . This is because these are
the only two types of queries to unambiguously identify
the inserted and removed triples.
RDF Blank Nodes5 are encoded using the skolemization

process [80], i.e. blank node are replaced by a unique URI
assigned by the KDB Manager.
An example of an RDFDelta with one triple being added

and one removed is encoded as an SPARQL Update query
in the following way:

Position and Transformation tables Internally our
robots use the ROS TF library [81] for representing coor-
dinate frames of all the agents. TF allows for keeping track
of all transformations between different components of a
robot (and between robots) represented as a tree. Each
node in the tree corresponds to a frame and includes the
rotation and translation between that frame and its parent
(see Fig. 24). The root of the tree is usually the origin of
the world.
The definition of the origin of the world is agent-specific

and can be different for all agents. Therefore in SCMod-
ule, we cut the tree at the main reference frame of each
agent and record the corresponding geoposes as different
entries in the Position table. This allows for maintaining
a global coordinate frame for all agents in the system. For
example, in Fig. 24, only the base_link and all its children
(pan_tilt, camera, IMU) are saved in the Transformation
table (top of Table 5) and the geopose (latitude, longitude,
altitude and orientation) of the base_link is saved in the
Position table (bottom of Table 5).

5Blank nodes can be used to identify an element of an RDF Triple without
providing an explicit URI

Table 5 Fields of the Transformation and Rotation SQL tables

Type Name Comments

Transformation

String AgentUri URI of the agent.

String FraneUri URI of the frame.

String ParentUri URI of the parent frame.

Uint Timestamp Data acquisition time.

Float[3] Translation Translation between the parent
and current frame.

Float[4] Rotation A quaternion representing the
rotation between the parent and
current frame.

Position

String AgentUri URI of the agent.

Float Latitude Latitude of the agent in the WSG84
[82].

Float Longitude Longitude of the agent in the
WSG84.

Float Altitude Altitude of the agent using the
EGM96 [83] gravity model.

Float[4] Rotation A quaternion representing the
orientation of the robot, such as
x-axis, y-axis and x-axis are pointing
respectively North, East and up.

Images Image data is stored in two tables: CameraFrame
and CameraInfo presented in Table 6. The former con-
tains basic information about the parameters of an image
such as the time of acquisition, its size, encoding type, etc.
The most bandwidth-intensive part is the data (i.e. pixel
values). The latter contains calibration information of the
camera sensor, such as the matrix of camera intrinsic
parameters K as well as the lens distortion parameters D.

Point clouds Sensor data representing point clouds is
stored in one table presented in Table 7. Point cloud
data typically consists of many measurements, and stor-
ing them as individual records in a database is inefficient.
Instead, we use data representation proposed in [84]. The
base type PcPoint is used to encode a single point LIDAR
measurement. A collection of those points is then grouped
in a complex type PcPatch which is stored as a record in
the database reducing the total number of entries. The
RDF View defining the mapping between the table and
corresponding RDF Triples used for querying of point
cloud data is shown in Fig. 25.

LIDAR data LIDAR data is stored in two tables: Lidar-
Frame and LidarConfig presented in Table 8. The for-
mer contains information about the time of acquisi-
tion, a pointer to the sensor’s configuration, and the
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Table 6 Fields of the CameraFrame and CameraInfo SQL tables

Type Name Comments

CameraFrame

String SensorUri URI of the sensor.

String DatasetUri URI of the dataset.

Uint Timestamp Data acquisition time.

String FrameId Transform frame for the image.

Uint Width Width of the image in pixels.

Uint Height Height of the image in pixels.

String Encoding Encoding the image data.

Uint Step Data step of the image data.

String Compression jpeg or raw - indicates if the image
is compressed.

Uint8[ ] Data Image data.

CameraInfo

Uint Width Width of the image in pixels.

Uint Height Height of the image in pixels.

String DistortionModel Name of distortion model.

Float[5] D 2 radial and 3 tangential lens
distortion parameters.

Float[9] K Intrinsic parameters, 3x3 row-major
matrix.

actual LIDAR readings in the form of ranges and return
intensities. The latter contains information about the sen-
sor configuration used during the data collection. Most
importantly, angular and range resolutions are specified.
The RDF View definitions for the mapping between the
SQL Tables and a set of triples that can be queried with
SPARQL are shown in Fig. 26.

B Additional sPARQL queries of interest
Based on the specifications in Appendix A, this appendix
provides additional examples of sensor-related SPARQL
queries and their use in acquiring object data about build-
ing structures.

Query for the range data of a LIDAR sensor The fol-
lowing query returns a set of ranges from the specified
dataset, i.e. from the dataset :

Table 7 Fields of the PointCloud SQL table

PointCloud

Type Name Comments

PcPatch patch A complex type that can represent
arbitrary point cloud data in
PostgreSQL [84].

Fig. 25 The RDF View (http://example.org/point_clouds) definition
for point clouds

The first part of the query selects the that
belongs to the dataset :

The second part of the query retrieves the
data:

Table 8 Fields of the LidarFrame and LidarConfig SQL tables

Type Name Comments

LidarFrame

String SensorUri URI of the sensor.

String DatasetUri URI of the dataset.

String FrameId Transform frame for the LIDAR data.

Uint Timestamp Data acquisition time.

LidarConfig Config A pointer to the sensor
configuration.

Float Ranges[] Range readings of the sensor.

Float Intensities[] Intensity readings of the sensor.

LidarConfig

Float AngleMin Angle for the first measurement.

Float AngleMax Angle for the last measurement.

Float AngleIncrement Angle between two
measurements.

Float TimeIncrement Time between two consecutive
measurements.

Float RangeMin Minimummeasurement distance.

Float RangeMax Maximummeasurement distance.

http://example.org/point_clouds
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Fig. 26 The RDF View definition for LIDAR Frames (http://example.org/lidar_frames, top) and the associated configuration of the sensor (http://
example.org/lidar_config, bottom)

Query for acquiring a list of buildings and their 3D
models This is an example of a query to access a list
of buildings and their corresponding 3D
models :

The first part of the query lists all buildings. Their 2D
footprints are stored in and their
names in :

The second part of the query lists all the point clouds
whose footprints

were obtained by projecting all the points on a 2D
plane intersecting with a specified building footprint

:

Finally, the point clouds are combined to give a single
result for each building with:

The function takes a set of 3D point clouds
and combines them into a single one. The
function takes a point cloud and a 2D footprint and output
a point cloud for which each point is inside the footprint.
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